منابع مشابه
Quotients of Gaussian Primes
It has been observed many times, both in the Monthly and elsewhere, that the set of all quotients of prime numbers is dense in the positive real numbers. In this short note we answer the related question: “Is the set of all quotients of Gaussian primes dense in the complex plane?” Quotient sets {s/t : s, t ∈ S} corresponding to subsets S of the natural numbers have been intensely studied in the...
متن کاملGaussian Mersenne and Eisenstein Mersenne primes
The Biquadratic Reciprocity Law is used to produce a deterministic primality test for Gaussian Mersenne norms which is analogous to the Lucas–Lehmer test for Mersenne numbers. It is shown that the proposed test could not have been obtained from the Quadratic Reciprocity Law and Proth’s Theorem. Other properties of Gaussian Mersenne norms that contribute to the search for large primes are given....
متن کاملA Stroll Through the Gaussian Primes
THE MOAT PROBLEM. One cannot walk to infinity on the real line if one uses steps of bounded length and steps on the prime numbers. This is simply a restatement of the classic result that there are arbitrarily large gaps in the primes. The proof is simple: a gap of size k is given by (k + 1)! + 2, (k + 1)! + 3, ... (k + 1)! + (k + 1). But the same problem in the complex realm is unsolved. More p...
متن کاملGoldbach for Gaussian, Hurwitz, Octavian and Eisenstein primes
We formulate Goldbach type questions for Gaussian, Hurwitz, Octavian and Eisenstein primes.
متن کاملSmall Gaps between Primes or Almost Primes
Let pn denote the nth prime. Goldston, Pintz, and Yıldırım recently proved that lim inf n→∞ (pn+1 − pn) log pn = 0. We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let qn denote the nth number that is a product of exactly two distinct primes. We prove that lim inf n→∞ (qn+1 − qn) ≤ 26. If an appropriate generalization of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1997
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-79-3-249-287